Wavelet-based synthesis of the Rosenblatt process

نویسندگان

  • Patrice Abry
  • Vladas Pipiras
چکیده

Based on a wavelet-type expansion of the Rosenblatt process, we introduce and examine two different practical ways to simulate the Rosenblatt process. The synthesis procedures proposed here are obtained by either truncating the series of the approximation term or using the approximation coefficients in the wavelet-type expansion of the Rosenblatt process. Both benefit from the low computational cost usually associated with the discrete wavelet transform. We show that the number of zero moments of a related orthogonal multiresolution analysis plays an important role. We study in detail the waveletbased simulation in terms of uniform convergence. We also discuss at length the importance of the choices of the initial and final resolutions, the specific case of the simulation on the integer grid as well as the usefulness of the wavelet-based simulation. Matlab routines implementing these synthesis procedures as well as their analysis are available upon request. r 2005 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity parameter

The purpose of this paper is to make a wavelet analysis of self-similar stochastic processes by using the techniques of the Malliavin calculus and the chaos expansion into multiple stochastic integrals. Our examples are the fractional Brownian motion and the Rosenblatt process. We study the asymptotic behavior of the statistics based on the wavelet coefficients of these processes. We find that,...

متن کامل

Wavelet Estimation of the Long Memory Parameter for Hermite Polynomial of Gaussian Processes

We consider stationary processes with long memory which are non–Gaussian and represented as Hermite polynomials of a Gaussian process. We focus on the corresponding wavelet coefficients and study the asymptotic behavior of the sum of their squares since this sum is often used for estimating the long–memory parameter. We show that the limit is not Gaussian but can be expressed using the non–Gaus...

متن کامل

Wavelet Based Estimation of the Derivatives of a Density for a Discrete-Time Stochastic Process: Lp-Losses

We propose a method of estimation of the derivatives of probability density based on wavelets methods for a sequence of random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for such estimators. We suppose that the process is strongly mixing and we show that the rate of convergence essentially depends on the behavior of a special quad...

متن کامل

Asymptotic behavior of the quadratic variation of the sum of two Hermite processes of consecutive orders

Hermite processes are self–similar processes with stationary increments which appear as limits of normalized sums of random variables with long range dependence. The Hermite process of order 1 is fractional Brownian motion and the Hermite process of order 2 is the Rosenblatt process. We consider here the sum of two Hermite processes of order q ≥ 1 and q+1 and of different Hurst parameters. We t...

متن کامل

Blind Source Separation for Operator Self-similar Processes

Self-similarity and operator self-similarity. An R-valued signal {Y (t)} is said to be operator self-similar (o.s.s) when it satisfies the scaling relation {Y (at)}t∈R fdd = {aY (t)}t∈R, a > 0, where fdd denotes the finite dimensional distributions, H is called the Hurst matrix, and a is given by the matrix exponential ∑∞ k=0 log(a) H k! . O.s.s processes naturally generalize the univariate sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2006